
Week 14 - Monday



 What did we talk about last time?
 Inheritance









 The idea of inheritance is to take one class and generate a 
child class

 This child class has everything that the parent class has 
(members and methods)

 But, you can also add more functionality to the child
 The child can be considered to be a specialized version of the 

parent



 All this is well and good, but how do you actually create a 
subclass?

 Let's start by writing the Vehicle class

class Vehicle:
def travel(self, destination):

print('Traveling to', destination)



 We use put the superclass name in parentheses when making a 
subclass

 A Car can do everything that a Vehicle can, plus more

class Car(Vehicle):
def __init__(self, model):

self.model = model

def getModel(self):
return self.model

def startEngine(self):
print('Vrooooom!')





 In large, object-oriented systems, it's common for there to be 
many classes with many children (and grandchildren, and 
great-grandchildren…)

 This kind of arrangement is called an inheritance hierarchy
 Using UML, we can draw inheritance relationships between 

classes with arrows
 Although it is counterintuitive, the UML standard is for the 

arrow to point from the child to the parent



 Drawing different 
kinds of shapes 
can be a useful 
task for 
inheritance

 Consider the 
following 
inheritance 
hierarchy shown in 
UML

GeometricObject

Line Point

Shape

Polygon

Rectangle Triangle



 The classes shown in the previous slide have an inheritance 
relationship with GeometricShape
 The is-a relationship, since each of those shapes is a 
GeometricShape

 We also need a place to draw those shapes
 We can create a Canvas class to draw them
 A Canvas is not a GeometricShape
 Instead, it provides a turtle that GeometricShape objects 

can use to draw themselves



 Since it's not important to the inheritance hierarchy, here's the code for 
Canvas

 It sets up a turtle and a screen in its constructor
 It also handles the turtle in the draw code

class Canvas:
def __init__(self, w, h):

self.turtle = turtle.Turtle()
self.screen = turtle.Screen()
self.screen.setup(width = w, height = h)
self.turtle.hideturtle()

def draw(self, shape):
self.turtle.up()
self.screen.tracer(0) # animation off
shape.draw(self.turtle)
self.screen.tracer(1) # animation back on



 You can't have a function (or an if statement or a loop) with 
nothing in it

 For these rare circumstances, there's a special keyword that 
means do nothing
 The pass keyword

def doNothing():
pass # would have errors otherwise



 Use the UML diagram to create the 
GeometricObject class

 The draw() function should do nothing
 Use pass!
 It takes in a turtle as well as self

 The constructor should:
 Set lineColor to 'black'
 Set lineWidth to 1

 A GeometricObjectwill give us the 
basic code for setting the color and the 
width of the lines we'll draw in child classes

GeometricObject

lineColor
lineWidth

getColor
getWidth
setColor
setWidth
draw



 Use the UML diagram to create the Point
class
 Remember that Point is a child of 
GeometricObject

 Its constructor takes an x and a y (and calls the 
super() constructor)

 The getCoordinate() function gives 
back a tuple containing x and y

 The draw() method will:
 Go to the given location with the turtle
 Use the turtle's dot()method to draw a point

▪ It takes a size (the width) and a color

Point

x
y

getCoordinate
getX
getY
draw



 Use the UML diagram to create the Line
class
 Remember that Line is a child of 
GeometricObject

 Its constructor takes two Point objects (start
and end) (and calls the super() constructor)

 The draw() method will:
 Set the turtle's color
 Set the turtle's width
 Go to the starting point
 Put the turtle's tail down
 Go to the ending point

Line

start
end

getStart
getEnd
draw



 Now we can draw a line using the classes we have
 The following code will create a red line with a thickness of 2, 

from (-100, -100) to (100, 100)

canvas = Canvas(500, 500)
line = Line(Point(-100,-100), Point(100, 100))
line.setWidth(2)
line.setColor('red')
canvas.draw(line)



 In addition to points and lines, we could have 
polygons

 The turtle module allows us to create 
polygons that are filled in

 Thus, we can add another class that inherits 
from GeometricShape, adding a fill color

 Use the UML diagram to create the Shape
class
 Remember that Shape is a child of 
GeometricObject

 Its constructor sets its fill color to None

Shape

fillColor

getFillColor
setFillColor



 To make a polygon with the turtle module, you have to do the 
following steps:
 Set the turtle's color to the color you want to fill the polygon
 Go to the starting corner of the polygon
 Call the begin_fill() method on the turtle
 Visit all the corners of the polygon, returning back to the starting point
 Call the end_fill() method on the turtle

 Important: You have to visit the points on the polygon in 
counterclockwise order
 Otherwise, it might fill your shape incorrectly



 Use the UML diagram to create the 
Rectangle class
 Remember that Rectangle is a child of 
Shape
 Its constructor takes two Point objects 

(lowerLeft and upperRight) (and 
calls the super() constructor)

 The draw() method will use the 
approach described on the previous 
slide to fill in the rectangle

Rectangle

lowerLeft
upperRight

getLowerLeft
getUpperRight
draw



 The book describes ways for the Canvas to keep a list of 
GeometricShape objects

 When one of them is changed, it can clear the screen and redraw 
everything, keeping everything updated

 By extending Shapewith other classes, you could make the 
following classes:
 Ellipse
 Circle
 Triangle
 Square
 Even more …







 No class Wednesday or Friday because of Thanksgiving
 Next Monday we will review up to Exam 1



 Work on Assignment 10
 Due next Friday

 Review chapters 1 through 4


	COMP 1800
	Last time
	Questions?
	Assignment 10
	Inheritance
	Inheritance
	Creating a subclass
	Extending a superclass
	Shapes
	Inheritance hierarchies
	Shapes
	Drawing shapes
	Canvas class
	One final bit of Python syntax
	GeometricObject class
	Point class
	Line class
	Using what we have
	Shapes
	Polygons with turtle
	Rectangle class
	Moving on from here
	Quiz
	Upcoming
	Next time…
	Reminders

