
Week 14 - Monday



 What did we talk about last time?
 Inheritance









 The idea of inheritance is to take one class and generate a 
child class

 This child class has everything that the parent class has 
(members and methods)

 But, you can also add more functionality to the child
 The child can be considered to be a specialized version of the 

parent



 All this is well and good, but how do you actually create a 
subclass?

 Let's start by writing the Vehicle class

class Vehicle:
def travel(self, destination):

print('Traveling to', destination)



 We use put the superclass name in parentheses when making a 
subclass

 A Car can do everything that a Vehicle can, plus more

class Car(Vehicle):
def __init__(self, model):

self.model = model

def getModel(self):
return self.model

def startEngine(self):
print('Vrooooom!')





 In large, object-oriented systems, it's common for there to be 
many classes with many children (and grandchildren, and 
great-grandchildren…)

 This kind of arrangement is called an inheritance hierarchy
 Using UML, we can draw inheritance relationships between 

classes with arrows
 Although it is counterintuitive, the UML standard is for the 

arrow to point from the child to the parent



 Drawing different 
kinds of shapes 
can be a useful 
task for 
inheritance

 Consider the 
following 
inheritance 
hierarchy shown in 
UML

GeometricObject

Line Point

Shape

Polygon

Rectangle Triangle



 The classes shown in the previous slide have an inheritance 
relationship with GeometricShape
 The is-a relationship, since each of those shapes is a 
GeometricShape

 We also need a place to draw those shapes
 We can create a Canvas class to draw them
 A Canvas is not a GeometricShape
 Instead, it provides a turtle that GeometricShape objects 

can use to draw themselves



 Since it's not important to the inheritance hierarchy, here's the code for 
Canvas

 It sets up a turtle and a screen in its constructor
 It also handles the turtle in the draw code

class Canvas:
def __init__(self, w, h):

self.turtle = turtle.Turtle()
self.screen = turtle.Screen()
self.screen.setup(width = w, height = h)
self.turtle.hideturtle()

def draw(self, shape):
self.turtle.up()
self.screen.tracer(0) # animation off
shape.draw(self.turtle)
self.screen.tracer(1) # animation back on



 You can't have a function (or an if statement or a loop) with 
nothing in it

 For these rare circumstances, there's a special keyword that 
means do nothing
 The pass keyword

def doNothing():
pass # would have errors otherwise



 Use the UML diagram to create the 
GeometricObject class

 The draw() function should do nothing
 Use pass!
 It takes in a turtle as well as self

 The constructor should:
 Set lineColor to 'black'
 Set lineWidth to 1

 A GeometricObjectwill give us the 
basic code for setting the color and the 
width of the lines we'll draw in child classes

GeometricObject

lineColor
lineWidth

getColor
getWidth
setColor
setWidth
draw



 Use the UML diagram to create the Point
class
 Remember that Point is a child of 
GeometricObject

 Its constructor takes an x and a y (and calls the 
super() constructor)

 The getCoordinate() function gives 
back a tuple containing x and y

 The draw() method will:
 Go to the given location with the turtle
 Use the turtle's dot()method to draw a point

▪ It takes a size (the width) and a color

Point

x
y

getCoordinate
getX
getY
draw



 Use the UML diagram to create the Line
class
 Remember that Line is a child of 
GeometricObject

 Its constructor takes two Point objects (start
and end) (and calls the super() constructor)

 The draw() method will:
 Set the turtle's color
 Set the turtle's width
 Go to the starting point
 Put the turtle's tail down
 Go to the ending point

Line

start
end

getStart
getEnd
draw



 Now we can draw a line using the classes we have
 The following code will create a red line with a thickness of 2, 

from (-100, -100) to (100, 100)

canvas = Canvas(500, 500)
line = Line(Point(-100,-100), Point(100, 100))
line.setWidth(2)
line.setColor('red')
canvas.draw(line)



 In addition to points and lines, we could have 
polygons

 The turtle module allows us to create 
polygons that are filled in

 Thus, we can add another class that inherits 
from GeometricShape, adding a fill color

 Use the UML diagram to create the Shape
class
 Remember that Shape is a child of 
GeometricObject

 Its constructor sets its fill color to None

Shape

fillColor

getFillColor
setFillColor



 To make a polygon with the turtle module, you have to do the 
following steps:
 Set the turtle's color to the color you want to fill the polygon
 Go to the starting corner of the polygon
 Call the begin_fill() method on the turtle
 Visit all the corners of the polygon, returning back to the starting point
 Call the end_fill() method on the turtle

 Important: You have to visit the points on the polygon in 
counterclockwise order
 Otherwise, it might fill your shape incorrectly



 Use the UML diagram to create the 
Rectangle class
 Remember that Rectangle is a child of 
Shape
 Its constructor takes two Point objects 

(lowerLeft and upperRight) (and 
calls the super() constructor)

 The draw() method will use the 
approach described on the previous 
slide to fill in the rectangle

Rectangle

lowerLeft
upperRight

getLowerLeft
getUpperRight
draw



 The book describes ways for the Canvas to keep a list of 
GeometricShape objects

 When one of them is changed, it can clear the screen and redraw 
everything, keeping everything updated

 By extending Shapewith other classes, you could make the 
following classes:
 Ellipse
 Circle
 Triangle
 Square
 Even more …







 No class Wednesday or Friday because of Thanksgiving
 Next Monday we will review up to Exam 1



 Work on Assignment 10
 Due next Friday

 Review chapters 1 through 4
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